
Study and modeling of the supervisory control system for
autonomous ground vehicles

Carlos F. de P. Perché
∗

Autonomous Mobility
Laboratory

FEM, Unicamp, 13083–860
Campinas, SP, Brasil

cfpp@fem.unicamp.br

Janito Vaqueiro Ferreira
Autonomous Mobility

Laboratory
FEM, Unicamp, 13083–860

Campinas, SP, Brasil
janito@fem.unicamp.br

Olmer García Bedoya
Autonomous Mobility

Laboratory
FEM, Unicamp, 13083–860

Campinas, SP, Brasil
olmerg@fem.unicamp.br

ABSTRACT
In this article, we present the study and modeling of an
architecture for the component responsible for operational
supervision over ground autonomous vehicles and a preli-
minary proposal for its implementation based on formal
approaches of discrete event systems and supervisory con-
trol theory. Under the proposed architecture, the supervisor
control is achieved through a uniform structure of generic
transitions modeled by finite state machines for the systems
present in the vehicle. This structure aims to make deter-
ministic system as a whole, facilitating the fulfillment of
the requirements for the implementation of the operations
performed.

This paper proposes a solution that enables the coordina-
tion of the components which make up ground autonomous
vehicles both behavioral and operational level, performing
the monitoring of their software task.

CCS Concepts
•Computer systems organization → Robotic auto-
nomy; Real-time systems; Distributed architectures; •Software
and its engineering → Software organization and proper-
ties;

Keywords
Unmanned land vehicle, supervisory control, finite state
machine, critical real-time system, discrete event system

1. INTRODUCTION
Autonomous land vehicles need to be equipped with a

variety of components for processing data, communication,
actuation, sensing, etc. The complexity of these components
has grown and increasingly they perform their duties inde-
pendently. Once the components are properly integrated and

∗Bolsista PEC/PG CAPES/CNPq-Brazil

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EATIS 2016 Cartagena, Colombia
c© 2015 ACM. ISBN 978-1-4503-4043-4.

DOI: XX.XXX/XXX X

coordinated, they can make autonomous possible navigation
guiding the vehicle with minimal human intervention [11].

Achieve autonomous behavior in a land vehicle still remains
a challenging issue, mainly due to the complexity of the
operating environment presents. The Earth’s surface as
well as climatic reasons, has a large variety of features that
make up the manual navigation difficult. These conditions
significantly interfere with the performance of land vehicles
[7].

The solution for such problems require require not only
the use of sophisticated components for processing, commu-
nication, actuation and sensing, but also a good strategy
for supervisory control that can enable the components to
use the best of their ability, without significant degradation
in performance of the system [6]. The main function of a
supervisory system is the monitoring and coordination of
activities running on components so that the vehicle meets
certain goals, which may range from moving from one place
to another as fast as possible, or simply follow another vehicle
ahead at a safe distance.

Also, we must take into account that this type of appli-
cation is characterized as a critical real-time system [25],
where alternatives to ensure that certain tasks are fulfilled in
a specified time period, otherwise severe failures will occur,
making the project unfeasible [9].

This work presents the proposal of the supervisory control
architecture for the Intelligent Vehicle of the Autonomous Mo-
bility Lab (VILMA) [15] and its development process, aimed
at obtaining autonomous operations in land environments,
taking into account the requirements for critical real-time
systems. Under the proposed architecture, we adopted a
uniform interface that should be incorporated into systems
that make up the vehicle as well as a platform that enables
the development of the project. The interface adopted repre-
sents a behavioral set, wherein each component present in
the vehicle architecture can have their tasks managed by the
supervisor, enabling the operations performed by the vehicle
have to deterministic character.

The rest of the paper is organized as follows. Section 2
describes the concepts and methodologies used to the archi-
tecture of supervision and lists the goals and desired require-
ments. Section 3 describes the general behavior of VILMA
autonomous vehicle, shows the modules and components
present in vehicle architecture, describes the state transitions
structure for the tasks to be performed on a component,
where the supervisory control strategies act according to
expected behavior and discusses a possible methodology for

XX.XXX/XXX_X


a formal synthesis of control for the proposed architecture.
Section 4 presents the software elements used in the architec-
ture development platform. Section 5 discusses a preliminary
description to implement the supervisory control architecture.
Section 6 concludes this paper.

2. ARCHITECTURE REQUIREMENTS
According to [23], autonomous systems must have three

basic operations: which are perception, location, and envi-
ronment mapping; path planning and movements control.
Typically a unmanned ground vehicle (UGV) has three ope-
rating modes: manual, autonomous and collaborative mode,
the latter consists of ADAS (Advanced Driver Asssited Sys-
tems).

The advancement of research involving UGV has resulted
in an increased level of complexity and amount of data in
their specific sensors and systems, creating the need to distri-
bute information processing in various embedded computers
that communicate synchronously. Thus, a appropriate su-
pervision of vehicle modules is essential to a modular design
with deterministic characteristics. This management should
perform the control according to the needs of each task ac-
tivities and ensure the vehicle behavior based on rules that
prioritize safe operations.

Formal techniques such as finite state machines (FSM) to
model the behavior of deterministic systems and get your
supervisory control has been used in various areas including
network communication, traffic control systems, assembly
lines, and so on [19] [4]. This same technique has been
presented by researchers in related work, such as robotic
applications and autonomous vehicle systems. [10] uses a
set of FSMs to describe the robot collaborative behavior to
football matches. [8] models the operations of an autonomous
robot using a hybrid system of automata, on which the
changes of their behavior is modeled by FSMs containing
discrete states which correspond to distinct behaviors through
a continuous model. [24] presents an application where their
behavior is based on modeling state machines for a modular
navigation system in a vehicle that operates under tunnels.

The described works aim to model the behavior between
the switching of activities to accomplish its tasks, making the
vehicle or the robot’s behavior strictly deterministic. Howe-
ver, the issue about dynamic reconfiguration of the systems
to that they can work in changing environments is not ad-
dressed. In addition, these studies do not take into account
the problem of coordination among the components that
make up the architecture of their robotic systems. While
there is great progress in addressing research methods of per-
ception, vision, positioning, navigation, trajectory planning,
control, etc., research and applications dealing supervision
platforms for autonomous systems are not at the same level.
[5] presents an architecture and preliminary implementation
for the supervisory system of UGV called Ulysses.

Having as the main objective of this study, the develop-
ment of a supervisory system called ”Vehicle Integrity Sys-
tem”(VIS), to be part of the VILMA project, responsible for
checking and control vehicle operating modes, monitor the
states of the other modules, supervise and coordinate sys-
tems in different operating modes, propose decision-making
in case of failure of any components, perform control and
message log for easier system maintenance and debugging du-
ring the project development phase. To meet the goal of the
work, the proposed architecture must ensure the following

requirements:

• propose an architecture with deterministic characteris-
tics for the development of critical real-time systems;

• standardize the communication interface between the
systems present in the vehicle architecture;

• provide a supervisory system which monitors the cur-
rent state of other vehicle components;

• the supervisory system should collect information about
the other components, which should be reported to the
user interface of the vehicle;

• in addition to the behavioral control and operational
management, the supervisory system must monitor the
health of the other components that implement the
interface provided by VIS;

3. PROPOSED ARCHITECTURE
This paper proposes a system for supervisory control using

the conventional concept of modeling FSM taking into ac-
count the problem of dynamic reconfiguration for the VILMA
vehicle as a potential development platform to other research
developed in the Autonomous Mobility Laboratory (LMA).
The formal concepts for modeling FSM and the control of
discrete event systems (DES) to the supervisory system are
adopted to perform the coordination of the other modules,
exchange vehicle operating mode, monitoring the integrity
of systems and management of the operating states of the
modules.

The supervisory control is able to manage only what the
other systems are reporting to him, and to do this, there
needs to have a common interface between modules in the
vehicle, which in case of a malfunction or the occurrence
of unexpected behavior the supervisory system can perform
the coordinating of the other systems to react to a potential
situation. The proposed platform may be considered as a
copilot type from the UGV that tells the vehicle as their
activities must be organized, which configuration to use at
a particular time, while displaying failures detected on a
specific system, etc.

3.1 Operational Modes
The Autonomous Mobility Laboratory (LMA) has already

set some basic requirements for the Vilma project. One of the
Vilma design specifications is that it should perform tasks in
manual, cooperative and autonomous modes of operation. In
the manual mode, the vehicle is driven by a human operator
in a conventional manner. In the cooperative mode, both
drivers work in harmony when tasks are not in conflict, and in
contraries cases, depending on a risk analysis, the embedded
system assumes the task and does not allow the pilot to has
the command. In the autonomous mode, the vehicle is driven
by a computer control system that receives data from your
sensors, processes the information collected and acts directly
on its mechanical actuators. Once in autonomous mode, the
vehicle is expected to perform tasks without direct human
intervention.

3.2 Modules and Components
The development of systems with a modular architecture

aims to improve quality of the software, decrease the time



required to integrate new features and speed up the delivery
of the work. For this reason, the first architecture proposal
to the VILMA project is designed to have basically composed
of seven systems, also called modules. Each system consists
of components that perform specific tasks. The modules and
some of the main components present in vehicle architecture
can be seen in the Figure 1.

Figure 1: Overview of the Vilma Systems and its Compo-
nents.

The list below introduces an overview of the modules and
its main functions to the VILMA project.

• Vehicle Model System (VMS): It is the system that re-
presents the vehicle, both real (physical) and simulated
(model). It implements the interface between the actu-
ators and the low-level sensors, in which the actuators
receive Vehicle Control System (VCS) commands to
perform tasks and respective generated signals to the
VCS;

• Vehicle Control System (VCS): Module responsible for
controlling the actuation of the vehicle and ensure the
safety of those involved in the operating environment.
Its main function is to provide commands to control
speed, acceleration and vehicle direction. The VCS ge-
nerates low-level signals that trigger the electromecha-
nical system, telling the desired speed, the acceleration
needed and the angle of direction. Moreover the VCS
system, has a cyclical feedback communication with
the VNS system to ensure that the speed and direc-
tion commands are both running correctly, taking into
account environmental factors such as wheel slippage
and others.

• Vehicle User System (VUS): The VUS module enables
the interaction of the driver to the car, both in local
mode and in remote mode, enabled by using came-
ras mounted on the vehicle to simulate the driver’s
view. The operator controls the movement of the car
through a remote control. Furthermore the system
should provide a graphical interface enabling the driver
to know the state of the vehicle in the real time as well
as provide alerts and diagnostics for debugging during
development stage.

• Vehicle Perception System (VPS): The VPS system
uses several instruments such as laser scanners, cameras,

ultrasonic sensors, etc. to construct digital maps of the
environment around the vehicle, it provides the local
perception of the vehicle. The generated local map is
sent to the VNS system, which performs the planning
of the trajectory and the generation of the movement
commands to the VCS system.

• Vehicle Localization System (VLS): Just like the VPS
system, the VLS module uses several instruments such
as GPS, IMU, electronic compasses and other sensors
that make possible to extract the precise location on a
global scale. It also gives the digital map information
for the VNS system to be able perform of path planning
and generation of the movement commands to the VCS
system.

• Vehicle Navigation System (VNS): It is responsible
for generating commands to the vehicle navigation in
order to perform the task specified by the operator.
Furthermore it must to be able to carry out the planning
of the path to the desired location, calculate the speed
and its heading, generating the necessary information
in order to the VCS system to perform the tasks safely.

• Vehicle Integrity System (VIS): The VIS module is
responsible to ensure the integrity of the system that
operates the vehicle while it is running. Its main func-
tion is to monitor and coordinate the activities of the
modules to achieve the expected behavior of the vehicle.
The VIS must also perform routing of data between the
other modules, registers and publishes the information
which contains the status of the systems. In a nutshell,
the VIS acts as a digital copilot. Further description of
the supervisory system will be presented in this paper.

3.3 States and Transitions for Supervisory Con-
trol

In order to have the proper coordination between the
activities performed by the present systems in the vehicle
architecture, it is necessary that the components have a
uniform behavior in relation to the VIS system. Thus, each
component needs to implement a common interface, modeled
by a set of states and transitions that are recognized by the
supervisory system, enabling him to manage the activities
being carried out, perform routing of messages required for
debugging and the data storage, etc. The coordination of
the modules is responsible for determining the sequence of
activities and the conditions that a system must have so that
it can perform its specialties.

Under the perspective of supervisory control, the states
present in the common interface of the systems are: PowerOn,
Standby, Ready, Working, InternalError, Emergency, Shut-
down and PowerOff. Each component must contain these
states. For a certain component, the meaning of the states
and the general behavior of the vehicle can be summarized
as follows.

• PowerOn The driver starts the vehicle, at this mo-
ment the engine is started but the car remains parked
awaiting the instructions of the driver.

• Standby The component comes to be started and the
vehicle remains stationary. In this state, the system
is not linked to an autonomous operation mode, it
remains awaiting the instructions from the supervisory



system about the operating mode that it will work or
the instruction to return to the manual mode;

• Ready, In this state the component is linked to an
autonomous operation mode but not yet operated in
this mode. The reason for the separation between
Standby and Ready states is due to the fact that the
article focuses on the general behavior of the vehicle,
clearly denoting the temporal separation of the states
which the vehicle can return to manual operation and
the state which it is ready to operate in standalone
mode. The temporal separation of the states is required
for the synchronization of activities on the components
before they enters in the state Working.

• Working, In this state the component is operating in a
autonomous mode and the vehicle is moving. Now, the
algorithm that performs specific functions of the com-
ponent begins to run to produce its expected behavior.

• InternalError e Emergency The component performs
tasks relevant to handling exceptions raised by your
specific algorithm or handling of emergency that might
compromise the overall operation of the vehicle.

• Shutdown, The component executes a predefined set of
routines preparing the vehicle to be turned off, bringing
the system to the state PowerOff;

• PowerOff, The system is turned off and no electric
signal is supplied to the component.

Transitions between states are a set of activities that lead
the components from one state to another. In order to a
transition occurs it must be triggered by an event. Once
invoked, the activities associated with the transition must be
performed successfully so that the component get into a new
state. The diagram of the common states and transitions to
the supervisory system can be seen in Figure 2. Specifications
that represent constraints of the activities for each module
may also be modeled by automatas to produce a composite
specification model. With the obtained model, based on the
theory of the DES we can get a formal model for supervisory
control, as discussed in [20].

The resultant specifications, described by an FSM form
a chain containing all activities and sequences of allowed
transitions to ensure that all specifications are fulfilled, i.e.,
when any of the modules need to perform a transition between
states of the FSM that describes its behavior. For example,
to enter the Working state or leave the Working state and
go to the Standby state or when a module is performing the
treatment of some exception in InternalError, all transitions
of related states must check their restrictions and obtain
permission from the supervisor module before the transition
occurs.

Although each component contains the set of states and
transitions required, the question of the activities involved in
the states and transitions is transparent to the VIS. In other
words, the VIS not internally knows the complexity of the
tasks performed within the states or during the transitions
from one component and there is no restriction that it only
has these states and transitions. The activities involved in
the transitions of each component may differ from those
present in other components.

Figure 2: States and transitions of components.

3.4 VIS on Formal Approach
After modeling pattern that determines the behavior of

the modules in terms of states and transitions, it is possi-
ble to synthesize logic of the VIS by formal techniques, for
example, the supervisory control theory to discrete event
systems [20]. The application of this technique requires
that the states and transitions of the modules are expres-
sed by sets of automata (called models), while the desi-
red behavior of the vehicle is expressed by other sets of
automata (called specifications). For example, the beha-
vior of a module, according to the specifications of the VIS
as illustrated in Figure 2, can be represented by an auto-
mata G = (Q,Σ, δ, q0, Qm), where, Q is a set of states, e.g.,
Q = {PowerOn, Standby, Ready, Working, InternalError,
Emergency, Shutdown, PowerOff }, Σ is a set of transitions,
e.g., Σ = {A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T},
δ : Q× Σ→ Q is a transition function that specifies the new
state after a transition from a given state, as presented in
Table 1, q0 is the initial state of the component and Qm ⊆ Q
is the set of states that indicate the completion of certain
desired sequence of tasks.

Since each module of the system is modeled by an auto-
maton Gi, a composite model of the overall behavior of the
vehicle can be build using the procedure called ”synchronous
product”, represented by the symbol ‖ [18]. The result of the
synchronous product over all Gi is a new automaton that
represents the ”free”behavior (uncontrolled) of simultaneous
activities of the components, i.e., G = G1‖G2‖G3‖...‖Gn.

Then the desired deterministic behavior of the vehicle may
be imposed on the behavior ”free”to obtain strategies for
supervisory control expected by the VIS system. Formally,
such behavior is also expressed in automata, called speci-
fications automata. By imposing the specifications of the
model composite of all vehicle components, a sequential set
of transitions may be obtained to be run by the VIS, ensuring
that the vehicle behavior control meets the specifications.

By using this approach, it is possible to synthesize the



δ(oldstate, transition) = newstate

Old state transition new state

power-on A standby

standby

B ready

C shutdown

D internal error

E emergency

ready

F working

G standby

H internal error

I emergency

working

J standby

K working

L internal error

M emergency

internal error

N standby

O shutdown

P emergency

Q internal error

emergency
R power-off

S emergency

shutdown T power-off

Table 1: Transition function δ of the FSM model.

supervisory control strategies that allow the vehicle to deal
with different situations. For instance, suppose that, due
to timing synchronization constraints, the VCS can only
enter the Working state after VNS is in Working state. This
can be considered as a requirement to comprise the desired
behavior for the initialization of a task. This requirement
can be expressed as a specification Si, as shown in Figure
3, which the cyclic loops represent other possible transitions
that can occur in the system.

Figure 3: Specification example, Avns: Transition from Ready
state to Working in the Vehicle Navigation System module,
Bvcs: Transition from Ready state to Working in the Vehicle
Control System module.

The supervisory control that guarantees the behavior of
the modules as a whole, and meets the specification imposed
by Si can be obtained, among other ways, by the algorithm
SUPCON [26]. Their function is to generate sequences of
events as another automaton V , e.g., V = SUPCON(G,Si),
that can be implemented to ensure the deterministic behavior
of the entire vehicle system.

By expressing all the requirements on vehicle behavior
in automaton specifications, it becomes possible to develop
a sophisticated method of control, which when implemen-
ted by the VIS will ensure that the vehicle meets all the

requirements imposed by other modules. This formal ap-
proach allows the systematic and proper development for
supervisory control strategies, and allows the introduction of
”programmed artificial intelligence”to the general behavior of
the vehicle, and hence obtain a high degree of autonomy.

4. ARCHITECTURE COMPONENTS
In order to meet the requirements presented in the pre-

vious sections, it is usually necessary the application to be
developed on a platform that has a sophisticated hardware
and software environment to ensure deterministic criteria
of a critical system real time. However, this paper focuses
its efforts to provide an architecture focused on technologies
and methodologies based purely on software, able to perform
critical tasks in real time, reducing the cost and time for
prototyping the VILMA project. The following is a brief
description of the components that make up the proposed
architecture.

Figure 4 shows the layout of the main elements that make
up the proposed development environment.

Figure 4: Proposed Vilma Platform Infrastructure to Achieve
the Requirements.

4.1 Linux
Linux is an operating system. It is the software on a com-

puter that enables applications and the computer operator
to access the devices on the computer to perform desired
functions. The operating system (OS) relays instructions
from an application to, for instance, the computer’s processor.
The processor performs the instructed task, then sends the
results back to the application via the operating system [1].



Linux, which began its existence as a server OS and has
become useful as a desktop OS, can also be used on all of
these devices. “From wristwatches to supercomputers”, is
the popular description of Linux’ capabilities. [14]

4.2 Xenomai
Xenomai [27] is a real-time development framework coope-

rating with the Linux kernel, in order to provide a pervasive,
interface-agnostic, hard real-time support to user-space ap-
plications, seamlessly integrated into the GNU/Linux envi-
ronment. The Xenomai drivers has the RTDM (Real-Time
Driver Model) which composes the following modules: CAN
Devices, Real-time IPC Devices, Serial Devices, and Testing
Devices [12].

4.3 RTnet
With Ethernet, the communications are not deterministic

because of the collision which can occur between several
host on a network with a hub, or because of the unknown
latency in the case of the switch. The deterministic com-
munication is not allowed by the Ethernet protocol because
of the possibility of collisions which can occurs and suppor-
ted by the mechanism CSMA/CD (Carrier Sense Multiple
Access/Collision Detection) [13].

RTnet is a protocol stack which run between the Ether-
net layer and the application layer (or IP layer) with hard
real-time requirements [22]. It aims, through the use of time
intervals (time-slots), is to make deterministic communica-
tion, by disabling the collision detection CSMA/CD, and
prevent buffering packet in the network.

RTnet is a software developed to run on Linux kernel
with RTAI or Xenomai real-time extension. It exploits the
real time kernel extension to ensure the determinism on
the communication stack. In this aim, all the instructions
related to this protocol makes use real time kernel functions
rather than those of Linux, which bound latencies to the
execution times and latencies of interruptions which provide
deterministic’s communication [28].

4.4 ROS
The robot software is base on the ROS (Robot Operating

System) [21], an meta-operating system for robots. It provi-
des the services like hardware abstraction, low-level device
control, and message-passing between processes. ROS is com-
posed by the operating system commands that manage the
packages, and a suite of user contributed packages (organized
into sets called stacks) that implement functionality such as
simultaneous localization and mapping, planning, perception,
simulation etc [16].

4.5 OROCOS
Orocos [2] is the acronym of the Open Robot Control

Software project. The project’s aim is to develop a general
purpose, free software, and modular framework for robot
and machine control. The Orocos project supports 4 C++
libraries [3]: the Real-Time Toolkit, the Kinematics and
Dynamics Library, the Bayesian Filtering Library and the
Orocos Component Library. The Orocos Real-Time Toolkit
(RTT) is not an application in itself, but it provides the
infrastructure and the functionalities to build robotics ap-
plications in C++. The emphasis is on real-time, on-line
interactive and component based applications.

The integration between the OROCOS framework and the

ROS system can be performed using rtt ros integration [17].
Briefly, ROS is used to create a communication interface
between the components and the OROCOS system performs
an encapsulation of the real-time kernel API (Xenomai),
enabling the definition and implementation of real-time tasks
or not.

5. VIS DESIGN
The supervisory control system performs management and

collecting information from other vehicle components through
a common interface that must be implemented by each of the
components. Thus, it should provide to other researchers of
the LMA means to achieve this, such that they can integrate
their projects with the supervisory system enabling the mana-
gement of their systems in a ”transparent”way. Furthermore,
after the integration with supervisory, the consumption of
system resources need to be as little as possible so as not to
impact the functional performance of the projects.

The supervisor should also ensure the integrity of the
components required to the execution of the tasks during
autonomous navigation, because of it, a message will be re-
quested periodically to each component present in the vehicle,
with the purpose of ensuring the presence of a particular
component and its proper operation.

5.1 A General Description of Modules Beha-
vior

Once requested by the driver that the vehicle operates
in autonomous mode, the VIS system should request to all
managed components to perform their startup procedure,
this may include sensors check, test the actuators, check the
presence of another component in the network, etc. Then if
none of the components detects failures during its startup,
they must notify the supervisory system that are initialized
and ready to operate in autonomous mode, so the VIS re-
quests all components to perform the switch to the Standby
state and stay waiting for new instructions.

Once in Standby, the VIS can instruct the components
go to the Shutdown state in case of failures detected by any
component, or to prepare for a specific mode of operation.
The components can switch to the Ready state if they have
done their configuration processes that ensure its activation
to the operation mode specified, as instructed by the VIS.
Once the process is completed, the VIS can instruct the
components to begin operating, bringing the components to
the Working state. Being in the Working state , the VIS can
instruct the components to return to the Standby state if
the exchange of the specific mode of operation is required.

Operational errors, represented by the InternalError state
can occur when a component is in any of the following states:
Standby, Ready and Working. Falls exclusively to the compo-
nent deciding what constitutes an operational error. When
an exception occurs, the VIS can instruct the component
that detected the problem to perform both, either the restart
procedure or its shutdown. If rebooted, the component will
return to the Standby state.

Emergencies, represented by the Exception state, can occur
when a component is in any of the following states: Standby,
Ready, Working or InternalError. The supervisory handles
an emergency in two ways, according to the seriousness of
the situation, or through of the decision of operator which
can instruct the component to be rebooted and return it to
the Standby state after the emergency is resolved, or choose



to shutdown of the system.
The structure of states and transitions shown in Figure 2

must be implemented by the VIS and for each component
as an event-driven software process (event-driven). The VIS
module interacts with other components based on this struc-
ture to perform supervision of the vehicle’s activities. These
states and transitions define the behavior of the components
that are managed by the VIS. However, there is no restriction
for the components to have their own states and transitions.
One component can have as many states and transitions are
necessary for its specific activities, the only difference is that
these will not be recognized by the VIS.

By adopting the state diagram and transitions presented in
Figure 2 as a standard of behavior interface between the VIS
and other components of the VILMA project, their internal
activities becomes transparent to the supervisory system,
ensuring the supervision of their activities without that the
VIS needs to interfere in the structure and operations of each
individual component.

5.2 Software Processes
The VIS module consists of two software processes. One

based on the event-driven process, which has the purpose to
provides the coordination of the activities between compo-
nents signaling the exchange of their states. The other one is
based on periodic process, periodic-tasks, for monitoring the
integrity of the components present in VILMA architecture.

The event-driven process is responsible for performing four
tasks:

1. To manage the switch sequences of vehicle operating
modes.

2. To manage the transition between the operational sta-
tes of the other components.

3. Perform routing of data between the components.

4. Collect informations about the vehicle status and its
components.

The periodic process is responsible for continuously mo-
nitoring the integrity of the other components at the entire
time in which the vehicle is running. The verification of other
components is performed through the time-stamped messa-
ges, called heartbeat, in a predefined frequency. If the period
of arrival heartbeats of a component match the preset value,
then the VIS module assumes that the particular component
is functioning normally.

If the supervisor does not receive the heartbeat of a com-
ponent, then the VIS will assume that particular component
is not working properly, so the supervisor will instruct all the
components to move to the Standby state, to evaluate the
possible failure. The periodic process of VIS module need
to send a heartbeat message to VNS module so that it can
monitor the operational health of the VIS, if the VIS heart-
beat messages do not arrive at VNS then it must instruct
the system to the emergency procedure.

To illustrate this scenario, assume that the frequency of
heartbeat messages to every components (excluding VIS) is
set to 1Hz. This selection should be based on taking into
consideration the distance that the vehicle will go through,
as soon as the failure of a component is detected by the VIS
until the moment when the vehicle is fully stopped. This
displacement will be called by braking distance (fail-stop).

Assume that the speed is defined by s in km/h and the
distance of vehicle stopped by d meters. With a frequency
of 1Hz to heartbeats messages, the VIS module will be
able to detect a fault in one component for each 1 second.
During the check time and under ideal conditions, the vehicle
will have traveled a distance of 1000s/3600 meters until its
complete stop. Assuming that the needed time required for
VIS instructs the system responsible for the actuators that
perform the full stop of the vehicle is close to zero, then
the fail-stop distance will be d + (1000s / 3600) meters.
Still as an example, assuming s = 10km/h, d = 4m and
(1000s/3600) = 2.8m. Thus the fail-stop distance when the
vehicle is moving at speed of 10km/h will be 4+2.8 = 6.8
meters in ideal conditions.

6. CONCLUSION
The discussion about the supervisory control system that

provides a deterministic behavior for other autonomous vehi-
cle systems illustrates how the robustness and security of the
VILMA project can be enhanced using the methodologies
presented. In this sense, the study and modeling for supervi-
sory control system that composes the proposed architecture
for VILMA vehicle development platform and its preliminary
implementation in order to meet their goal was introduced,
to perform autonomous operations in Earth environment
safely.

Through the proposed architecture, it is possible to get
the management of the systems that compose the VILMA
vehicle by adopting a uniform interface modeled by FSMs
using generic transitions to switch states for tasks performed
on every vehicle component. The state machine model repre-
sents the behavioral set that the components managed by
the VIS system will implement, making the system to have
a high degree of determinism, i.e., the vehicle will have an
expected behavior during the execution of all their tasks.

Furthermore, we showed that this architecture can ease
the implementation for more sophisticated control strategies
using formal techniques, as in the case of the DES, where the
supervisory control based on discrete event methodology can
raise the degree of autonomy of the vehicle, and represents
a next step in the development of intelligent autonomous
vehicle VILMA.

We also proposed a development platform composed of
a technological scaffold focusing on the goal of making the
work of the LMA research group standardized, consolidating
the agility, the low cost for the development of the VILMA
prototype and its continuity, since all the tools are well do-
cumented and widely spread. These technologies are widely
used and consolidated in industrial equipments and research
groups.

The integration between the low-level systems (Linux,
Xenomai, Ethernet and RTnet), enables the achievement
of results within the scope of the critical real-time systems
with distributed processing, ensuring the requirements for
the viability of the application. The integration between the
user-level libraries (ROS and OROCOS), strengthens the
idea of flexibility and simplification to the development of
researches developed in the LMA, initially this integration
is based solely on features for the data flows between the
components of this two frameworks.

7. ACKNOWLEDGMENTS



This work has been co-founded by CNPq and CAPES. Gar-
cia O. is sponsor by a Scholarship PEC/PG CAPES/CNPq-
Brazil

8. REFERENCES
[1] M. Barabanov. A linux-based real-time operating

system. PhD thesis, New Mexico Institute of Mining
and Technology, 1997.

[2] H. Bruyninckx. Open robot control software: the
orocos project. In Robotics and Automation, 2001.
Proceedings 2001 ICRA. IEEE International
Conference on, volume 3, pages 2523–2528 vol.3, 2001.

[3] H. Bruyninckx and P. Soetens. The Orocos User’s
Manual: Open RObot COntrol Software 2.7.0, May
2009.

[4] V. Chandra, S. Mohanty, and R. Kumar. Automated
control synthesis for an assembly line using discrete
event system control theory. In American Control
Conference, 2001. Proceedings of the 2001, volume 6,
pages 4956–4961 vol.6, 2001.

[5] P. Chen, J. Guzman, T. Ng, A. Poo, and C. Chan.
Supervisory control of an unmanned land vehicle. In
Intelligent Control, 2002. Proceedings of the 2002 IEEE
International Symposium on, pages 580–585, 2002.

[6] M. L. Cummings, P. Pina, and J. W. Cr. 1 a metric
taxonomy for supervisory control of unmanned vehicles.

[7] B. Donmez and M. L. Cummings. Metric selection for
evaluating human supervisory control of unmanned
vehicles. In Proceedings of the 10th Performance
Metrics for Intelligent Systems Workshop, PerMIS ’10,
pages 14–21, New York, NY, USA, 2010. ACM.

[8] M. Egerstedt, K. Johansson, J. Lygeros, and S. Sastry.
Behavior based robotics using regularized hybrid
automata. In Decision and Control, 1999. Proceedings
of the 38th IEEE Conference on, volume 4, pages
3400–3405 vol.4, 1999.

[9] A. Goodloe and L. Pike. Monitoring distributed
real-time systems: A survey and future directions.
Technical Report NASA/CR-2010-216724, NASA
Langley Research Center, July 2010. Available at
http://ntrs.nasa.gov/search.jsp?R=278742&id=3&as=
false&or=false&qs=Ns%3DArchiveName%257c0%
26N%3D4294643047.

[10] G. Gupta, C. Messom, and H. Sng. State transition
based supervisory control for a robot soccer system. In
Electronic Design, Test and Applications, 2002.
Proceedings. The First IEEE International Workshop
on, pages 338–342, 2002.

[11] M. H. Hebert. Intelligent Unmanned Ground Vehicles:
Autonomous Navigation Research at Carnegie Mellon.
Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[12] J. Kiszka. The Real-Time Driver Model and First
Applications.

[13] J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink.
Rtnet - a flexible hard real-time networking framework.
In ETFA 2005: 10th IEEE Conference on Emerging
Technologies and Factory Automation, pages 449–456.
IEEE, 2005.

[14] Linux foundation, 2015.

[15] The LMA website, 2015.

[16] J. M. O’Kane. A Gentle Introduction to ROS.

Independently published, oct 2013. Available at
http://www.cse.sc.edu/˜jokane/agitr/.

[17] Orocos. Orocos-ROS integration libraries and tools,
2015.

[18] L. Y. Pao and N. Wu. Introduction to discrete event
systems, second edition (cassandras, c.g. et al.; 2008)
[bookshelf]. Control Systems, IEEE, 29(3):108–110,
June 2009.

[19] L. Pinzon, H.-M. Hanisch, M. Jafari, and T. Boucher.
A comparative study of synthesis methods for discrete
event controllers. Formal Methods in System Design,
15(2):123–167, 1999.

[20] P. Ramadge and W. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77(1):81–98,
Jan 1989.

[21] ros.org. ROS core components.

[22] RTnet. RTnet doccumentation.

[23] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza.
Introduction to autonomous mobile robots. MIT press,
2011.

[24] S. Sircar. Modular navigation strategy for an
autonomous mobile robot., 2015.

[25] L. Wang. Real-time software design for safety- and
mission-critical systems with high dependability. In
Autotestcon, 2006 IEEE, pages 479–485, Sept 2006.

[26] W. M. Wonham and P. J. Ramadge. On the supremal
controllable sublanguage of a given language. SIAM
Journal on Control and Optimization, 25(3):637–659,
1987.

[27] Xenomai. A Tour of the Native API - RevC, 2006.

[28] Xenomai. Xenomai with RTnet, 2006.

http://ntrs.nasa.gov/search.jsp?R=278742&id=3&as=false&or=false&qs=Ns%3DArchiveName%257c0%26N%3D4294643047
http://ntrs.nasa.gov/search.jsp?R=278742&id=3&as=false&or=false&qs=Ns%3DArchiveName%257c0%26N%3D4294643047
http://ntrs.nasa.gov/search.jsp?R=278742&id=3&as=false&or=false&qs=Ns%3DArchiveName%257c0%26N%3D4294643047
http://www.cse.sc.edu/~jokane/agitr/

	Introduction
	Architecture Requirements
	Proposed Architecture
	Operational Modes
	Modules and Components
	States and Transitions for Supervisory Control
	VIS on Formal Approach

	Architecture Components
	Linux
	Xenomai
	RTnet
	ROS
	OROCOS

	VIS Design
	A General Description of Modules Behavior
	Software Processes

	Conclusion
	Acknowledgments
	References

