
HighFrame: An Integrated Solution for High-Level
Development and Automatic Deployment
of Component-Based Distributed Systems

Felipe Oliveira Carvalho
Pontı́fica Universidade Católica do Rio

de Janeiro
Rio de Janeiro - Rio de Janeiro - Brasil

fcarvalho@inf.puc-rio.br

Sandra Costa Pinto Hoenstch
Alvarenga

Instituto Federal de Sergipe
Aracaju - Sergipe - Brasil
sandra.costa@ifs.edu.br

Saulo Eduardo Galilleo Souza
dos Santos

Instituto Federal de Sergipe
São Cristóvão - Sergipe - Brasil

saulo.galilleo@ifs.edu.br

Tarcı́sio da Rocha
Universidade Federal de Sergipe
São Cristóvão - Sergipe - Brasil

tarcisiorocha@gmail.com

Abstract
This paper presents HighFrame, an integrated solution for high-
level development and deployment that aims to reduce the com-
plexity of developing heterogeneous component-based distributed
systems. The developer keeps the focus on the business of the sys-
tem (generic components in POJO style + Fraclet annotations) and
uses a graphical model to define the architecture of the distributed
system. HighFrame performs the deployment process of the sys-
tem by automatically generating the technical code for component
models and remote bindings, distributing, instantiating and making
the system ready for use.

Categories and Subject Descriptors C.2.4 [Distributed Systems]:
Distributed Applications; D.2.12 [Software Engineering]: Inter-
operability and Distributed objects

Keywords Component-Based Development, Components Gener-
ation, Automatic Deployment

1. Introduction
Distributed systems have become increasingly more complex, be-
ing composed of dynamically interconnected heterogeneous parts
in the composition of richer systems [1]. This has been a major
challenge for the new generation of middleware designers and other
solutions for the development of distributed systems.

A promising approach that has been adopted in the development
of complex distributed systems is the Component-Based Software
Engineering (CBSE). The use of a component model enables the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EATIS’16, April 27–29, 2016, Cartagena de Indias, Bolivar, Colombia.
Copyright c© ACM 978-1-5090-2435-3/16/ c©2016 IEEE. . . $31.00.
http://dx.doi.org/10.1145/

development of reusable components and facilitates the construc-
tion of dynamic systems. However, despite these benefits, the adop-
tion of this development model may represent the introduction of
more complexity in the software development process.

In addition to this challenge, the development process of
component-based distributed systems involves other obstacles,
such as (i) remote communication between distributed components;
(ii) deployment of components in distributed nodes; and (iii) the in-
terconnection of components developed in heterogeneous models.
These difficulties can make the task of developing a distributed sys-
tem more complex, even when this system has simple functional
requirements.

Given the emerging niche of distributed systems based on com-
ponents, a important challenge is to reduce the development com-
plexity of these types of systems. In this paper we present High-
Frame, a tool that allows to reduce the complexity of developing
distributed systems based on heterogeneous components.

Some published studies also identify the need for solutions that
facilitate the development process of component-based systems.
For example, a solution for the development of embedded systems
with automatic generation of specific components in SaveCCM
model is presented in [5]; an MDA (Model-Driven Architecture)
tool for building service-oriented component-based applications in
which high-level models are transformed into specific components
in the OSGi component model is presented in [3]. Fraclet is pre-
sented in [4] as a standard programming model for diverse compo-
nent models. However, besides these works are only limited to the
generation of components, they also do not deal with the problems
of scenarios involving distributed environments.

2. HighFrame
HighFrame incorporates a set of technologies which together pro-
vide a high-level development of distributed systems based on het-
erogeneous components. HighFrame proposes an integrated solu-
tion that includes: (i) component development based on generic
implementations focused on the business code of an application;
(ii) definition of the architecture of a system based on a high-level

Figure 1. HighFrame Architecture.

graphical model; (iii) automatic deployment of the architecture in
distributed nodes, providing the system in its functional form.

HighFrame architecture is fully distributed. This architecture is
shown in Figure 1.

HighFrame Server provides through the Manager module a cat-
alog of existing components on the Generic Components Database.
With these components the developer can compose the architecture
and the deployment plan of the distributed system. The composi-
tion process of a system can be done graphically with a graphical
planner – with it the developer defines the distributed nodes, drag
and drop the components to the respective nodes and creates the in-
terconnections between them. Moreover, the developer also defines
which specific component models are used in the deployment and
which means of remote binding are used between them (eg. Web
Services SOAP/REST, RMI). The high-level model of the system
is mapped to generate the HighADL, a specific ADL of HighFrame.
A deployment plan is also generated automatically with HighADL.
The Manager module of HighFrame Server processes the ADL and
then selects each referenced generic component to perform the dis-
tribution to the respective distributed nodes.

After that, HighFrame Client (which is located on each dis-
tributed node) uses the Component Generator (CG) module to gen-
erate the specific components in a given model (eg. Fractal, Open-
COM). Then the Component Generator triggers the Deployment
Agent (DA) that makes the installation, activation and interconnec-
tion (local binding) of the components, and also promotes the re-
mote binding between components of distributed nodes. A solution
called InteropFrame [2] is used in the process of remote binding.
InteropFrame was developed to provide automatic interconnection
between possibly heterogeneous distributed components.

2.1 HighFrame Use
The steps to be followed for development with HighFrame are: i)
development of generic components; and ii) defining the architec-
ture through the graphical planner (HighFrame Designer). With the
completion of these steps, HighFrame generates the technical code
of specific components, remote distributed communication, com-
munication between heterogeneous components and automatically
performs the deployment of the distributed system.

2.1.1 Development of generic components
So that the developer can focus on the business of the system be-
ing developed, HighFrame provides an abstraction layer for the
development of the involved components. This layer is based on
the Fraclet annotation model [4], which deals with concerns of
component-based development that are independent of any compo-
nent technology. For example, developing a Java component with
this model would be equivalent to developing a class in POJO
(Plain Old Java Object) style including Fraclet annotations in the
source code: @Component denotes component, @Interface de-
notes an interface of the business of the system, @Requires marks
a required interface and @Provides marks a provided interface.
The annotated source code represents a generic component and is
ready to be inserted in HighFrame’s database of generic compo-
nents. This database centralizes all generic components in a server
so that they become available for reuse in any new architecture.
An example of the definition of a generic component is shown in
Source Code 1.

Source Code 1. Generic Component Example.
@Component(provides = @Interface(name = "r",
signature = Runnable.class))
public class Receiver implements
Runnable {

private final Logger log = getLogger("comanche");
@Requires
private Scheduler s;
@Requires
private Handler rh;

In the example from the Source Code 1, we have the definition
of the component Receiver that provides an interface ”r”. This
interface refers to the implementation of Java’s Runnable class. The
Receiver component also defines two required interfaces, the first
one is ”s”, which requires a component that provides Scheduler
and the second is ”rh”, which requires a component that provides
Handler.

2.1.2 Definition of the architecture through the graphical
planner

The process of defining the architecture of the system allows to
perform various settings for the use of existing components in the
database of generic components. The framework provides a high-
level graphical tool, called HighFrame Designer, for the compo-
sition of an architecture. Figure 2 presents the architecture of the
Comanche Web Server, planned with HighFrame Designer.

This process of architecture definition allows the developer to
signalize the creation of components for different component tech-
nologies that will be deployed in different network nodes, commu-
nicating through one of the communication methods offered by the
framework. The developer does not need to know technical details
nor destine efforts to develop technical code, so he can keep the
focus on the business of the application. The whole process of cre-
ating the architecture can be performed with the ”drag and drop”
pattern. The result of this high-level modeling are two files that are
generated in XML. One is the HighADL and the other one is the
deployment plan, both to be sent to HighFrame Server.

2.2 Automatic Deployment
After the process of defining the architecture, the files are sent
to HighFrame Server. Manager module interprets HighADL and
extracts the architecture of the distributed subsystems. Then it
selects the generic components and creates the packages to be sent
to the distributed nodes. These packages contain the system sub-
architecture, the deployment plan and the generic components. To

Figure 2. Comanche Web Server architecture.

Figure 3. Activity diagram of HighFrame Client.

understand the tasks performed when a package is delivered to the
HighFrame Client, Figure 3 presents a simple activity diagram.

HighFrame Client interprets the received sub-architecture and
generates specific components from generic components (1). After
the generation of specific components, the compilation and addition
to the project step is performed at runtime (2). Thus, these compo-
nents become available for use by the runtime of these component
models. Then, HighFrame Client interconnects the components (3).
When a connection between distributed components is detected,
HighFrame Client triggers the InteropFrame module to automat-
ically generate the technical code for distributed remote commu-
nication (4). Lastly the system is activated (5) and automatically
executed.

HighFrame allows the generation of OpenCOM and Fractal
components, as well as InteropFrame provides interoperability be-
tween these two component models. Furthermore, both HighFrame
and InteropFrame solutions are flexible and extensible. This ex-
tensibility allows the development of new plugins (Java classes
+ Velocity templates) for the support of new component models
and also new methods of remote communication between hetero-
geneous components.

3. Scenario for Evaluation
To evaluate the HighFrame proposal, we present a case study based
on the Comanche Web Server [4], which is a simple web server
composed of the following components:

• Receiver - Performs the incoming HTTP requests;
• Scheduler - Responsible for scheduling the HTTP requests for

analysis;
• Analyzer - Performs the analysis of HTTP requests;
• Logger - Logs all incoming requests;
• Dispatcher - Responsible for the interpretation of incoming

HTTP requests;
• FileHandler - Performs the handling of the request for a file;
• ErrorHandler - Responsible for handling errors.

The proposed model of the Comanche Web Server is being dis-
tributed in two nodes. This architecture is shown in Figure 2. In the
first node is the Comanche Frontend, which consists of the compo-
nents Receiver and Scheduler. In the second node is the Comanche
Backend, which is composed of the components Analyzer, Logger,
Dispatcher, FileHandler and ErrorHandler. To measure the behav-
ior of HighFrame in a complex environment, the Frontend is gen-
erated in the OpenCOM model while the Backend is generated in
Fractal. The component Receiver of the Frontend communicates
with the component Analyzer in the Backend through SOAP Web
Service. Every definition of component models, distributed nodes
and methods for distributed remote communication is performed at
a high-level with HighFrame Designer.

The environment in which the experiments were performed
consists of two computers interconnected: One with Intel(R) Core
(TM) i5 2.50GHz CPU, with 6GB of RAM and the 64-bit OS
Microsoft Windows 8 Pro, running the HighFrame Server and one
HighFrame Client for the Frontend deployment; and other one with
Celeron(R) Dual Core (TM) 1.90Ghz CPU, with 2GB of RAM, and
the 32-bit OS Windows 7 Pro, running the HighFrame Designer and
one HighFrame Client for the Backend deployment. The source
code was compiled and run from the development environment
for Java applications Eclipse 4.3 Kepler, using the JVM (TM) SE
Runtime Environment 1.7.

4. Results
To measure the performance of HighFrame the following metrics
were defined: (i) time to generate the HighADL and the deployment
plan; (ii) time for the generation of specific components; (iii) time
to generate the distributed remote communication.

For the measurements each experiment was run 12 times, ex-
cluding the best and the worst result.

4.1 HighADL and deployment plan generation
This performance test measures the processing time that the High-
Frame takes to generate the HighADL and the deployment plan
files. These are generated by mapping the graphical model planned
in HighFrame Designer into XML files. The results of this experi-
ment are shown in Figure 4.

On the X axis of the graph from Figure 4 is the sequence
number of the experiments, while on the Y axis is the time scale
in milliseconds. The longest measured time was 5ms, while the
smallest was 3ms. These measurements result in an average time
of 4ms. These results show that the time for generation of the
HighADL and the deployment plan is negligible compared to the
benefits of using the tool, as this do not causes a significant impact
on processing time.

4.2 Specific components generation
In this experiment we measured the time required for the creation
of specific components of the Comanche Web Server. The scenario
is composed by the Frontend and the Backend observed in Figure
2. Figure 5 shows the obtained results.

Figure 4. Time for the generation of HighADL and deployment
plan.

Figure 5. Time for specific components generation

In the graph of Figure 5, it is possible to see that the time spent
generating components was almost constant. The average time to
generate each component of the Frontend was 81.4 ms. The average
time to generate each component of the Backend was 91.66 ms. The
average total time to generate all the components from the Frontend
was 162.8 ms, while for generating the Backend was 458.3 ms.

4.3 Remote communication generation
In this experiment we measured the time required to create and
activate the components of remote communication (proxies). SOAP
Web Service was the method used for the generation of the remote
communication. The results are shown in Figure 6.

Figure 6. Time for the generation and activation of proxies using
InteropFrame.

In the graph of Figure 6 is presented the measurements for the
process of communication generation between two distributed re-
mote nodes. The Frontend node interacts with the Backend to re-
quest the generation of proxies for the communication. The server
side of the InteropFrame is located at the Backend and is respon-
sible for setting up the SOAP Web Service server. The client side
of the InteropFrame is located at the Frontend and is responsible
for setting up the parameters for interconnection, besides trigger-
ing the server to make the connection available. The client side of
the InteropFrame has more subroutines and this reflects the results
obtained in Figure 6. The average time for the Backend to generate
and activate its proxy components was 67.4 ms, while the average
time in the Frontend was 894.1 ms.

5. Conclusions
This article presented the HighFrame, a framework in which the
complexity of technical code of component models and the diver-
sity of these, as well as the complexity of the methods for dis-
tributed remote communication and the need for interoperability
between different component models were treated transparently
to the developer. The proposal allows the developer to keep the
concern of developing the application’s business code while High-
Frame generates automatically the complex technical code of de-
velopment of distributed systems based on heterogeneous compo-
nents.

The code annotations have been proposed to deal with the com-
plexity of technical code for components. The graphical planner
was proposed for modeling the architecture of distributed systems
based on generic components, allowing the generation and commu-
nication of heterogeneous components. This allows users to make
use of these resources for high-level development.

The obtained results demonstrate the feasibility of HighFrame
use, since the time required for the generation of technical code,
compilation and activation at runtime are considered low when
compared to the manual development of these same procedures.
This proposal allows to solve more broadly the challenges faced in
the development of component-based distributed systems. Future
works for the HighFrame will be toward assessing the usability of
the graphical planner and to create templates and classes for new
component models.

References
[1] G. Blair, M. Paolucci, P. Grace, and N. Georgantas. Interoperability in

Complex Distributed Systems. In 11th International School on Formal
Methods for the Design of Computer, Communication and Software Sys-
tems: Connectors for Eternal Networked Software Systems. Springer,
2011. URL http://hal.inria.fr/inria-00629057.

[2] S. C. do Nascimento. Um Framework extensı́vel para interoperabili-
dade dinâmica entre componentes distribuı́dos. Master’s thesis, Uni-
versidade Federal de Sergipe, 2013.

[3] N. Riba and H. Cervantes. A mda tool for the development of service-
oriented component-based applications. In ENC, pages 149–156, 2007.

[4] R. Rouvoy and P. Merle. Leveraging component-based
software engineering with fraclet. annals of telecommu-
nications, 64:65–79, 2009. ISSN 0003-4347. . URL
http://dx.doi.org/10.1007/s12243-008-0072-z.

[5] S. Sentilles, A. Pettersson, D. Nystrom, T. Nolte, P. Pettersson,
and I. Crnkovic. Save-ide - a tool for design, analysis and im-
plementation of component-based embedded systems. In Pro-
ceedings of the 31st International Conference on Software Engi-
neering, ICSE ’09, pages 607–610, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-1-4244-3453-4. . URL
http://dx.doi.org/10.1109/ICSE.2009.5070567.

